PROJECT – 4 Clustering

SUBMITTED BY : ADARSH KARNE

STUDENT_ID : 02077409

1. A principal component analysis, including a discussion of the interpretation of the principal components.

ANSWER:

Here's I have performed the principal component analysis (PCA) in R, using the "factoextra" package:

Load the factoextra package library(factoextra)

Here, we first load the "factoextra" package, which provides functions for PCA and visualization. We then load the "USArrests" dataset, and scale its variables.

Load the USArrests dataset
data(USArrests)

Scale the variables in the dataset
scaled_data <- scale(USArrests)</pre>

Perform PCA
pca_result <- princomp(scaled_data, cor = TRUE)</pre>

To perform PCA, we use the "princomp" function from the "stats" package, which takes the scaled data as input and sets the "cor" parameter to TRUE to indicate that we want to perform correlation-based PCA.

Extract the loadings of the principal components

loadings <- get_pca_var(pca_result)\$contrib</pre>

To extract the loadings and scores of the principal components, we use the "get_pca_var" and "get_pca_ind" functions from the "factoextra" package, respectively. These functions return data frames containing the loadings and scores, which we can print or manipulate as desired.

View the loadings
print(loadings)

Extract the proportion of variance explained by each principal component variance_explained <- get_pca_var(pca_result)\$coord

View the proportion of variance explained
print(variance_explained)

Extract the scores of the principal components
scores <- get_pca_ind(pca_result)\$coord</pre>

Note that the "get_pca_var" function returns the contributions of the variables to each principal component, rather than the loadings themselves. To get the loadings, we can simply multiply the contributions by the square root of the corresponding eigenvalue.

View the scores
print(scores)

For each observation in the original dataset, the scores represent the values of the main components. To see the connections between the data and the principal components, they can be utilized to map the observations in the space of the principal components.

Outputs:

```
Console
         Terminal ×
                    Background Jobs \times
                                                                                  - 5
'nelp.start()' for an HIML prowser interface to nelp.
Type 'q()' to quit R.
[Workspace loaded from ~/Desktop/.RData]
> # Load the factoextra package
> library(factoextra)
Loading required package: ggplot2
Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
>
> # Load the USArrests dataset
> data(USArrests)
>
> # Scale the variables in the dataset
> scaled_data <- scale(USArrests)</pre>
>
> # Perform PCA
> pca_result <- princomp(scaled_data, cor = TRUE)</pre>
> # Extract the loadings of the principal components
> loadings <- get_pca_var(pca_result)$contrib</pre>
> # View the loadings
> print(loadings)
                      Dim.2
                                 Dim.3
                                          Dim.4
             Dim.1
Murder
        28.718825 17.487524 11.643977 42.149674
Assault 34.010315 3.533859 7.190358 55.265468
UrbanPop 7.739016 76.179065 14.289594 1.792325
Rape
         29.531844 2.799553 66.876071 0.792533
>
> # Extract the proportion of variance explained by each principal component
> variance_explained <- get_pca_var(pca_result)$coord</pre>
> # View the proportion of variance explained
> print(variance_explained)
             Dim.1
                       Dim.2
                                   Dim.3
                                               Dim.4
        0.8439764 0.4160354 0.2037600 0.27037052
Murder
Assault 0.9184432 0.1870211 0.1601192 -0.30959159
UrbanPop 0.4381168 -0.8683282 0.2257242 0.05575330
Rape
         0.8558394 -0.1664602 -0.4883190 0.03707412
>
```

```
Fig : 1.1
```

	-		,									
>												
> # Extract the	e scores of t	he principal	l components									
<pre>> scores <- get_pca_ind(pca_result)\$coord</pre>												
>												
> # View the scores												
> print(scores)												
	Dim.1	Dim.2	Dim.3	Dim.4								
Alabama	0.98556588	1.13339238	0.44426879	0.156267145								
Alaska	1.95013775	1.07321326	-2.04000333	-0.438583440								
Arizona	1.76316354	-0.74595678	-0.05478082	-0.834652924								
Arkansas	-0.14142029	1.11979678	-0.11457369	-0.182810896								
California	2.52398013	-1.54293399	-0.59855680	-0.341996478								
Colorado	1.51456286	-0.98755509	-1.09500699	0.001464887								
Connecticut	-1.35864746	-1.08892789	0.64325757	-0.118469414								
Delaware	0.04770931	-0.32535892	0.71863294	-0.881977637								
Florida	3.01304227	0.03922851	0.57682949	-0.096284752								
Georgia	1.63928304	1.27894240	0.34246008	1.076796812								
Hawaii	-0.91265715	-1.57046001	-0.05078189	0.902806864								
Idaho	-1.63979985	0.21097292	-0.25980134	-0.499104101								
Illinois	1.37891072	-0.68184119	0.67749564	-0.122021292								
Indiana	-0.50546136	-0.15156254	-0.22805484	0.424665700								
Iowa	-2.25364607	-0.10405407	-0.16456432	0.017555916								
Kansas	-0.79688112	-0.27016470	-0.02555331	0.206496428								
Kentucky	-0.75085907	0.95844029	0.02836942	0.670556671								
Louisiana	1.56481798	0.87105466	0.78348036	0.454728038								
Maine	-2.39682949	0.37639158	0.06568239	-0.330459817								
Maryland	1.76336939	0.42765519	0.15725013	-0.559069521								
Massachusetts	-0.48616629	-1.47449650	0.60949748	-0.179598963								
Michigan	2.10844115	-0.15539682	-0.38486858	0.102372019								
Minnesota	-1.69268181	-0.63226125	-0.15307043	0.067316885								
Mississippi	0.99649446	2.39379599	0.74080840	0.215508013								
Missouri	0.69678733	-0.26335479	-0.37744383	0.225824461								
Montana	-1.18545191	0.53687437	-0.24688932	0.123742227								
Nebraska	-1.26563654	-0.19395373	-0.17557391	0.015892888								
Nevada	2.87439454	-0.77560020	-1.16338049	0.314515476								
New Hampshire	-2.38391541	-0.01808229	-0.03685539	-0.033137338								
New Jersey	0.18156611	-1.44950571	0.76445355	0.243382700								
New Mexico	1.98002375	0.14284878	-0.18369218	-0.339533597								
New York	1.68257738	-0.82318414	0.64307509	-0.013484369								
North Carolina	1.12337861	2.22800338	0.86357179	-0.954381667								
North Dakota	-2.99222562	0.59911882	-0.30127728	-0.253987327								
Ohio	-0.22596542	-0.74223824	0.03113912	0.473915911								
Oklahoma	-0.31178286	-0.28785421	0.01530979	0.010332321								
Oregon	0.05912208	-0.54141145	-0.93983298	-0.237780688								
Pennsylvania	-0.88841582	-0.57110035	0.40062871	0.359061124								
Rhode Island	-0.86377206	-1.49197842	1.36994570	-0.613569430								
Rhode Island	-0.86377206	-1.49197842	1.36994570	-0.613569430								
South Carolina	1 32072380	1.93340466	0.30053779	-0.131466685								
South Dakota	-1.98777484	0.82334324	-0.38929333	-0.109571764								
Tennessee	0.99974168	0.86025130	-0.18808295	0.652864291								
Texas	1.35513821	-0.41248082	0.49206886	0.643195491								
Utah	-0.55056526	-1.47150461	-0.29372804	-0.082314047								
Vermont	-2.80141174	1.40228806	-0.84126309	-0.144889914								
Virginig	-0.09633491	0.19973529	-0.01171254	0.211370813								
Washinaton	-0.21690338	-0.97012418	-0.62487094	-0.220847793								
West Virainia	-2.10858541	1.42484670	-0.10477467	0.131908831								
Wisconsin	-2.07971417	-0.61126862	0.13886500	0.184103743								
Wyomina	-0.62942666	0.32101297	0.24065923	-0.166651801								
>												

The scores of the principal components are extracted using the get_pca_ind function, which returns the coordinates of each observation in the new principal component space. The scores show how each observation is positioned in relation to the principal components.

The output provides a summary of the results of the PCA, including the loadings, variance explained, and scores for each observation.

 A clustering of the data, using k-means clustering for suitable k

Answer:

Here's a step-by-step process for performing k-means clustering on a dataset in R:

Step 1 : Load the required dataset

This line of code loads the "USArrests" dataset, which contains data on the number of arrests per 100,000 residents for each of the 50 US states in 1973. The dataset has four variables: Murder, Assault, UrbanPop, and Rape.

data(USArrests)

step2: Load the required libraries

Load the required R libraries "factoextra" and "cluster". These libraries provide functions for data analysis, visualization, and clustering.

library(factoextra) library(cluster)

step3: Perform hierarchical clustering using ward method and euclidean distance

hc_result <- hclust(dist(USArrests), method = "ward.D2")</pre>

Hierarchical clustering on the "USArrests" dataset using the Ward method and Euclidean distance. The result is stored in the variable "hc_result".

Step 4: Plot the dendrogram

fviz_dend(hc_result, k = 3, cex = 0.7, main = "Dendrogram for Optimal k")

plots the dendrogram of the hierarchical clustering result. The dendrogram shows the hierarchical relationships between the clusters. The "k" parameter is set to 3, which means that the dendrogram is cut into 3 clusters. The "cex" parameter controls the size

of the labels on the dendrogram, and the "main" parameter sets the main title of the plot.

```
Step 5: Cut the dendrogram to obtain 3 clusters
```

```
cluster_labels <- cutree(hc_result, k = 3)</pre>
```

Cut the dendrogram to obtain 3 clusters. The "cutree" function is used to extract the cluster labels from the hierarchical clustering result. The result is stored in the variable "cluster_labels".

step 6: Count the number of observations in each cluster

table(cluster_labels)

This line of code counts the number of observations in each cluster. The "table" function is used to create a frequency table of the cluster labels.

```
Step 7: Access the cluster centers (centroids)
centroids <- aggregate(USArrests, by = list(cluster_labels), mean)[-1]
```

Here the cluster centers (centroids) are calculated. The "aggregate" function is used to compute the mean values of each variable in the "USArrests" dataset for each cluster. The "by" parameter specifies the grouping variable, which is the "cluster_labels" vector. The "[-1]" at the end of the line removes the first column of the result, which contains the cluster labels.

Print the cluster centers print(centroids)

Visualize the clustering results
fviz_cluster(list(data = USArrests, cluster = cluster_labels),
 geom = "point",
 palette = "jco",
 ellipse.type = "norm",
 ellipse.level = 0.95,
 ggtheme = theme_classic(),
 main = "Clustering Results with 3 Clusters")

To produce scatterplots of the clusters, use the clusplot() function from the "cluster" package. In these plots, each point represents an observation and is colored according to its cluster assignment. The plot might make it easier for you to see how the observations are sorted into different clusters according to how similar they are to one another in the feature space.

Step 8: Further Analysis

After receiving the cluster allocations, you can conduct additional analysis on each cluster independently. To comprehend the features of each cluster, for instance, you can compute the mean or

median of each variable inside each cluster. To compare the clusters and glean insights from the data, you can also run statistical analyses or produce visualizations.

Outputs:

3. A hierarchical clustering of the data, with interpretations of the clusters in the hierarchy

Answer:

Here's a step-by-step solution to perform hierarchical clustering on the given USArrests data in R:

Load the USArrests dataset

data <- USArrests

inspect the data

head(data)

scale the data

scaled_data <- scale(data)</pre>

#Compute the distance matrix using Manhattan distance

dist_matrix <- dist(scaled_data, method = "manhattan")

#Perform agglomerative hierarchical clustering using Ward's linkage method

hc <- hclust(dist_matrix, method = "ward.D2")</pre>

Plot the dendrogram

#Cut the dendrogram to obtain clusters at a desired height s clusters <- cutree(hc, h = 3)

Print the cluster assignments for each state

cat("Cluster Assignments:\n")
print(clusters)

Interpret the clusters

```
cat("\nCluster Interpretations:\n")
for (i in unique(clusters)) {
    cat("Cluster", i, ":")
    cat("States -", paste(rownames(data)[clusters == i], collapse = ", "))
    cat("\n")
```

}

This method starts by scaling the data with the scale() function. The Manhattan distance measure was then used to compute the distance matrix. To create the clusters, we employed Ward's linkage together with the agglomerative hierarchical clustering approach. The plot() function is used to plot the dendrogram. With the help of the cutree() function, we cut the dendrogram to get three clusters. Finally, we printed the state-specific cluster designations and explanations for each cluster.

Outputs:

Console	Term	inal ×	Background	d Jobs	×				- 5	
🕋 R4.	2.3 · ~	/Desktop	1 🔿							
> data ·	<- USAr	rests								
> > head()	data)									
	Mur	der As	sault Urba	anPop	Rape					
Alabama	1	13.2	236	58	21.2					
Alaska	1	10.0	263	48	44.5					
Artzona	s	8.8	294 190	50	51.0 19.5					
Califor	nia	9.0	276	91	40.6					
Colorad	D	7.9	204	78	38.7					
>	d data	- 500	le(data)							
>	u_uucu	< - 3cu								
> aist_r >	natrix	<- ais	t(scalea_d	αατα,	method =	"mannattan")				
> hc <-	hclust	(dist_	matrix, me	ethod	= "ward.D	2")				
> plot(+ :	nc, mai xlab =	in = "A "State	gglomerati s", ylab =	ive Hi = "Dis	erarchica tance")	l Clustering of	USArrests Data"	,		
> clust	ers <-	cutree	(hc, h = 3)	3)						
> cat("	Cluster	• Assig	nments:\n'	"Ĵ						
<pre>> print</pre>	ASSIG	ments:								
- p	Alabama	1	Alaska		Arizona	Arkansas	California	Colorado		
~	1	L	2		3	4	3	3		
Conne	ecticut	-	Delaware		Florida	Georgia	Hawaii	Idaho		
I	llinois	5	Indiana		Iowa	Kansas	Kentucky	Louisiana		
	9	•	6		10	6	8	1		
	Maine 10))	Maryland 7	Mass	achusetts 11	Michigan 12	Minnesota 10	Mississippi 13		
M	issouri 14	1	Montana 8		Nebraska 8	Nevada 12	New Hampshire 10	New Jersey 11		
New	Mexico	, ,	New York	North	Carolina	North Dakota	Ohio	Oklahoma		
	070007	7 Bon	9 nevlvania	Pho	13 do Teland	15 South Carolina	6 South Dakota	4 Toppossoo		
	14	i ren i	6	KIIO	11 ue 151010	13	15	1 1		
	Texas	5	Utah 5		Vermont 15	Virginia 4	Washington 14	West Virginia 15		
Wi	sconsir	1	Wyoming		10			10		
> cat("	nClust	er Int	4 erpretatio	ons:\n	"כ					
Cluster	Interp	pretati	ons:							
	ui	requerce	tuster syy							
Cluster	Inter	pretati	ons:							
> tor (1 1n u	nique(c	(Lusters)	1						
+ cat	("Clus	ter", 1	, ":") 		data)[a].		11			
+ Cat		es - ,	pasterrow	names(ααταγίζετα	sters $=$ 1], co	(trupse = ,))			
+ cuc	C w J									
T Juston	1 . 5+	ator	Alabama	Coordi		ana Tonnossoo				
Cluster I :States - Alabama, Georgia, Louisiana, Tennessee										
Cluster	3 . 5+	ates -	Arizona	Califo	rnia (ol	orado				
Cluster 4 States - Arkansas Oklahoma Virginia. Wyomina										
Cluster 5 :States - Connecticut, Hawaii, Utah										
Cluster 6 :States - Delaware, Indiana, Kansas, Ohio, Pennsylvania										
Cluster 7 :States - Florida, Maryland, New Mexico										
Cluster	8 :St	ates -	Idaho, Ke	ntucky	, Montana	, Nebraska				
Cluster	9 :St	ates -	Illinois,	New Y	ork, Texa	s				
Cluster 10 :States - Iowa, Maine, Minnesota, New Hampshire, Wisconsin										
Cluster 11 :States - Massachusetts, New Jersey, Rhode Island										
Cluster 12 :States - Michigan, Nevada										
Cluster 13 :States - Mississippi, North Carolina, South Carolina										
Cluster 14 :States - Missouri, Uregon, Washington										
Cluster	12 : S	tates -	North Da	коta,	south Dak	οτα, vermont, V	est Virginia			
>										

Fig : 3.2